Sforzo e Deformazione nelle Rocce

Deformazione, forze, sforzi

- Deformazione: risultato di tutti i processi che agiscono sulla roccia a seguito dell'applicazione di forze
- Forze sforzi deformazione

Sforzo su un piano

 In un corpo in equilibrio, sulle facce opposte di una qualsiasi superficie interna devono esistere forze tali che la loro loro somma sia uguale a zero. Lo sforzo su una superficie è rappresentato da una coppia di forze uguali ed opposte, che agiscono sulla superficie. Lo sforzo (stress, σ) su una superficie è il <u>rapporto tra la forza applicata F e</u> <u>l'area A</u> sulla quale la quale essa agisce. Se la forza F è uniformemente distribuita su un'area A, lo sforzo sulla superficie sarà:

$$\sigma = \frac{F}{A}$$

se varia:

$$\sigma = \lim_{\Delta \to 0} \frac{\Delta F}{\Delta A} \quad \text{oppure} \quad \sigma = \frac{dF}{dA}$$

Componenti dello sforzo

 Due componenti, una perpendicolare e una parallela alla superficie stessa. Queste componenti sono dette, rispettivamente, componente normale dello sforzo o sforzo normale σ_n e componente tangenziale dello sforzo o sforzo di taglio τ.

Componenti dello sforzo

Forze e sforzi su un piano

 $\sigma = \frac{F}{A}$

 $\alpha = 30^{\circ}$

Sforzo in un punto

Scomposizione delle forze che agiscono sulle facce di un cubo

Sforzo in un punto

se non ci sono accelerazioni o rotazioni:

Sforzi principali: $\sigma_{1,\sigma_{2,\sigma_{3}}$

Nuovo sistema di riferimento tale che sforzi di taglio sia zero

Stresses in given coordinate system

Principal stresses

Sforzi principali: $\sigma_{1,\sigma_{2,\sigma_{3}}$

Nuovo sistema di riferimento tale che sforzi di taglio sia zero

$$\tau_{xy} = \tau_{xz} = \tau_{yz} = 0$$

in 3D:

stress e piani principali

Sforzi su un piano

 Se si conoscono gli sforzi principali si può conoscere la componente normale e di taglio su un piano

$$\sigma_n = \frac{\sigma_1 + \sigma_3}{2} + \frac{\sigma_1 - \sigma_3}{2} \cos 2\theta$$
$$\tau = \frac{\sigma_1 - \sigma_3}{2} \sin 2\theta$$

Fratture coniugate

σ1

Analisi della Deformazione

- In una roccia sottoposta a stress si ha variazione nello spazio della posizione dei punti materiali che costituiscono la roccia. Questa variazione può essere scomposta in:
- traslazione e rotazione, spostamento dei punti materiali nello spazio senza variazione di forma del corpo;
- <u>deformazione</u> (strain), cioè la variazione della forma del corpo in seguito al reciproco spostamento dei punti materiali.

Traslazione

- Il movimento del corpo avviene senza variazione di forma (le distanze a-b e a'-b' sono uguali) e di orientazione
- Lo spostamento rispetto alla posizione iniziale è lo stesso per qualsiasi punto del corpo, per esempio le distanze a-a' e b-b' sono uguali.

Traslazione

pillow-lava

Rotazione

- Il movimento del corpo avviene senza variazione di forma.
- L'orientazione di linee rispetto ad un sistema di riferimento fisso varia.

Rotazione

controimpronte

Deformazione

- Deformazione: variazione della forma
- Def. omogenea: la stessa in ogni punto
- Def. inomogenea: non è la stessa in ogni punto di un corpo

Deformazione

Misura della deformazione

- Variazione della lunghezza di linee o la variazione di angoli tra linee
- La deformazione legata alla variazione di lunghezza di linee è espressa dall'<u>estensione</u> (o estensione longitudinale) e, cioè la variazione di lunghezza per unità di lunghezza iniziale:

$$e = \frac{l_1 - l_0}{l_0} = \frac{\Delta l}{l_0}$$

I valori di *e* sono compresi tra -1 e ∞

• Altra grandezza è l'<u>elongazione quadratica</u> λ :

$$\lambda = \left(\frac{l_1}{l_0}\right)^2 = (1+e)^2$$

Misura della deformazione

velocità di deformazione: $\dot{e} = \frac{\delta e}{\delta t}$

Misura della deformazione

Strain di taglio: $\gamma = \tan \psi$

Tipi di deformazione

- <u>Deformazione coassiale</u> (o irrotazionale) : gli assi principali dello strain non variano durante la deformazione (taglio puro).
- <u>Deformazione non coassiale</u> (o rotazionale) : l'orientazione degli assi principali dello strain varia durante la deformazione (taglio semplice).

Deformazione progressiva

- <u>strain finito</u> : la deformazione finale che noi oggi possiamo osservare in una roccia.
- <u>strain incrementale</u> : ogni singola deformazione che ha subito la roccia in ogni istante della sua storia deformativa.
- Questo processo, dalla roccia indeformata alla roccia nel suo stato finale mediante una continua deformazione nel tempo attraverso la sovrapposizioni di successivi strain incrementali, è detto <u>deformazione progressiva</u>.

Deformazione progressiva

 Non ci sono dei rapporti semplici tra orientazione degli stress principali e direzione di estensione/raccorciamento in una roccia, in quanto <u>entrambi possono variare di</u> <u>orientazione nel tempo</u> durante la storia deformativa.

- Vediamo in maggior dettaglio alcuni aspetti di una deformazione per taglio semplice:
- perché possono estesi ad altri tipi di deformazione;
- perché sono molto comuni nella crosta terrestre (sovrascorrimenti, faglie, zone di taglio, ecc.)

- una forma originariamente circolare si trasforma un'ellisse, l'<u>ellisse dello strain</u>
- aumentando la deformazione, l'asse maggiore dell'ellisse dello strain aumenta mentre l'asse minore diminuisce

- una forma originariamente circolare si trasforma un'ellisse, l'ellisse dello strain
- aumentando la deformazione, l'asse maggiore dell'ellisse dello strain aumenta, mentre l'asse minore diminuisce

- All'aumentare dello strain di taglio l'ellisse tende a ruotare e a parallelizzarsi con la direzione di taglio
- - per ogni valore di γ sono possibili due soluzioni a 180° tra loro, orientazioni asse maggiore e minore dell'ellisse strain;
- all'aumentare di γ l'angolo θ' tende a zero, cioè l'asse maggiore dell'ellisse dello strain tende a parallelizzarsi all'asse x (no valori negativi)

Osservazioni:

- all'aumentare della deformazione l'ellisse dello strain diventa progressivamente più allungata e si parallelizza alla direzione di taglio, in natura corrispondente ai limiti di una zona di taglio;
- negli stati iniziali di una deformazione (minimi incrementi di strain, in zone a bassa deformazione), lo strain di taglio γ ha valori molto bassi, in queste condizioni l'asse maggiore dell'ellisse dello strain è già orientato a 45° con la direzione di taglio

Osservazioni:

 nel caso di vene di estensione (tension gashes) l'orientazione della parte inizale e finale della vena, cioè delle zone a minore deformazione, ci fornisce l'indicazione dell'orientazione della direzione X di allungamento e Z di raccorciamento nella roccia;

Osservazioni:

- in zone di taglio lo strain di taglio è massimo nella parte centrale, mentre diminuisce fino a zero avvicinandoci ai limiti della zona ditaglio;
- questo spiega perché ai limiti della zona di taglio la foliazione forma un angolo di 45° con i limiti della zona di taglio.

Rapporti sforzo-deformazione

ATTENZIONE!!

- In affioramento possiamo riconoscere solo lo strain finito della roccia
- Una deformazione per taglio semplice e una deformazione per taglio puro possono produrre lo stesso strain finito
- Dalla sola osservazione della roccia deformata non possiamo risalire al tipo di storia deformativa che ha subito la roccia e all'orientazione degli sforzi principali che hanno prodotto la deformazione.

Rapporti sforzo-deformazione

Per risalire al tipo di storia deformativa che ha subito la roccia e all'orientazione degli sforzi principali che hanno prodotto la deformazione dobbiamo avere:

- altre informazioni sull'evoluzione della roccia durante l'evento deformativo
- conoscere l'orientazione originaria nella roccia di oggetti che ora risultano deformati

